# Al-Saudia Virtual Academy <br> Pakistan Online Tuition - Online Tutor Pakistan <br> M.A (PREVIOUS) EMAMINATION 2002 HELD IN 2003 <br> ECONOMICS (PAPER-V-C) <br> (MATHEMATICAL ECNOMICS) 

Time: 3 Hours
Max.Marks:100
Instructions:
(1) Attempt any five questions.
(2) All question carry equal marks.
Q. 1 The equilibrium condition for three related market is given by:

$$
\begin{gathered}
X+y+2 z=3 \\
2 x+3 y+2 z 4 \\
x+3 z=5
\end{gathered}
$$

Find the equilibrium quantity for each market using matrix inversion method.
Q. 2 Consider the following equations of four sector economy.

$$
\begin{array}{lll}
C=375+0.75 y d . & 1=405-10 i & G=600 \\
T=57+0.3 y & x=285 & M=0.09 y \\
M d=45+0.25 y-10 I, & M s=540 &
\end{array}
$$

(i) Calculate the equilibrium values of income and rate of interest.
(ii) It Government increases income tax rate form $t=0.3$ to $t=0.4$ how will this effect the equilibrium income.
(iii) How government can achieve the objective of increasing the equilibrium output by 508 units.
Q. 3 (a) the demand and supply equation of a single commodity are given respectively as.

$$
P+Q^{2}+5 Q=39 \text { and } 12 Q=19
$$

Determine the equilibrium values of price and quantity.
(b) Given $f(x)=x^{2}$ ex $\log x^{2,}$ determine the elasticity of $f(x) / x$.
Q. 4 Examine the comparative static properties of the equilibrium price and quantity, given partial equilibrium market model as follows:
$Q d=a-b p$ demand curve.
Qs = - c + dp Supply curve
Qd = Qs a, b, c, d, > 0
Q. 5 (a) Given the function $f(x y)=2 x^{2}+24 x-y^{2}+30 y$ determine the location and nature of any stationary pains.
(b) If the total cost function for a good is $C(x)=(x+4)^{3}$, where $x$ represents the number of hundred of units produced. How many units will minimize average cost?
Q. 6 An approximate demand function which expresses the daily ridership as a function of the fare charged is $q=10,000-125 p$, where " $q$ ' equals the numbers of riders per day and $p$ equals the fare is Rs.
(a) Determine the fare which should be charged in order to maximize daily bus fare revenue.
(b) What is the expected maximum revenue?
© How many riders per day are expected under this fare?
Q. 7 Differentiate between the following terms:
(i) Constants and parameters.
(ii) Square matrix and column matrix.
(iii) Exponential function and logarithmic function.
(iv)Implied function and Homogenous function.
(v)Behavioral equations and definitional equations.

