Al-Saudia Virtual Academy

www.pakistanonlinetuition.com

Chapter no.10	
MCQs	

Geometrical

www.onlinetutorpakistan.com Optics

- 7. The image formed by a plane mirror is:
 - (a) Real.
 - (b) Virtual.
 - (c) Erect and of equal size.
 - (d) Laterally inverted.
 - (e) B, c, and d.
 - (f) A, b and c.
- 8. A real image is that:
 - (a) Which can be projected on a screen?
 - (b) Which is inverted with respect to the object?
 - (c) Which is formed by the actual intersection of reflected of refracted rays.
 - (d) All of these.
- 9. A virtual image is that:
 - (a) Which can not be projected on a screen?
 - (b) Which is erect with respect to the object?
 - (c) Which is formed diverging reflected or refracted rays produced backward.
 - (d) All of these.
- 10. When an object is placed between the enter of curvature "C" and focus "F" of a concave mirror, the image formed will be:
 - (a) Real, inverted and at C.
 - (b) Real, inverted and beyond C.
 - (c) Real, erect beyond C.
 - (d) Real, inverted between C and F.
- 11. Convex mirror forms:
 - (a) Real image of all object distances.
 - (b) Virtual image for all object distances.
 - (c) Some times real and some times virtual image.
 - (d) Smaller image.
- 12. Image formed by a concave mirror is virtual only when:
 - (a) The object is at infinity.
 - (b) The object is at C.
 - (c) The object is at F.
 - (d) The object is between F and pole of the mirror.
- 13. An imaginary line passing through center of curvature and pole of a spherical mirror is called:
 - (a) Axis of curvature.
 - (b) Radius of curvature.
 - (c) Principle axis.
 - (d) None of these.

- 1. All the rays reflected from a concave mirror will be parallel to each other only when the object is:
 - (a) At C.
 - (b) At F.
 - (c) At infinity.
 - (d) Between C and F
- 2. A lens which is thick in the middle and thin at the edges is called:
 - (a) Thick lens.
 - (b) Thin lens.
 - (c) Concave lens.
 - (d) Convex lens.
- 3. Convex lens acts as a:
 - (a) Diverging lens for all object distances.
 - (b) Converging lens for all object distances.
 - (c) Converging lens for all object distances, except when the object is between F and optical center.
 - (d) Diverging lens for all object distances, except when the object is between F and Optical center.
- 4. Concave lens acts as a:
 - (a) Diverging lens for all object distances.
 - (b) Converging lens for all object distances.
 - (c) Converging lens for all object distances, except when the object is between F and optical center.
 - (d) Diverging lens for all object distances, except when the object is between F and optical center.
- 5. Spherical aberration is a defect of convex lenses due to which:
 - (a) Images formed by a convex lens are spherical.
 - (b) Images formed by a convex lens are inverted.
 - (c) Images formed by a convex lens are blurred.
 - (d) Images formed by a convex lens are slightly colored at the edges.
- 6. Spherical aberration can be eliminated by:
 - (a) Using a concave lens.
 - (b) Using only the middle portion of convex lens.
 - (c) Using combination of convex and concave lens.
 - (d) Using a thick convex lens.

21. Chromatic aberration is a defect of convex lenses due to	14. Diameter of the outer rim of a lens is called:
which:	(a) Diameter of the lens.
(a) Images formed by a convex lens are spherical.	(b) Circumference of a lens.
(b) Images formed by a convex lens are inverted.	(c) Aperture of the lens.
(c) Images formed by a convex lens are blurred.	(d) Area of the lens exposed to light.
(d) Images formed by a convex lens are slightly colored at	15. The minimum distance from the eye at which an
the edges.	object can be seen clearly without straining the eye
22. Chromatic aberration is due to:	muscles is called:
(a) Interference of light.	(a) Strain-less distance.
(b) Diffraction of light.	(b) Clear vision distance.
(c) Refraction of light.	(c) Visibility.
(d) Dispersion of light.	(d) Least distance of distinct vision.
23. The reciprocal of focal length of a lens is called:	16. For a normal human eye, the value of least distance of
(a) Magnifying power of a lens.	distinct vision is about:
(b) Resolving power of a lens.	(a) 25 mm.
(c) Dispersive power of a lens.	(b) 25 cm.
(d) Power of a lens.	(c) 25 inches.
24. Unit of power of a lens is:	(d) 25 m.
(a) Watt.	17. Magnifying glass is a convex lens for which:
(b) Horse power.	(a) Object is at infinity and the image is formed at 25
(c) Joule.	cm.
(d) Diopter.	(b) Object is at F and the image is formed at 25 cm.
25. Power of a convex lens is:	(c) Object is at the center of curvature and image is
(a) High.	formed at 25 cm.
(b) Low.	(d) Object is between F and optical center and the
(c) Positive.	virtual image is formed at the least distance of
(d) Negative.	distinct vision.
26. Power of a concave lens is:	18. Apparent size of an object depends upon the angle
(a) High.	subtended by the object at the observers eye, larger
(b) Low.	the angle larger the object appears to be. This angle is
(c) Positive.	called:
(d) Negative.	(a) Angle of elevation.
27. When two or more thin lenses are in close combination, the	(b) Angle of depression.
total power of the combination is equal to:	(c) Angle of inclination.
(a) The algebraic um of powers of individual lenses.	(d) Visual angle.
(b) Difference of power of individual lenses.	19. Image formed by a magnifying glass is:
(c) Sum of reciprocal of power of individual lenses.	(a) Real, inverted and magnified.
(d) Product of power of individual lenses.	(b) Real, erect and magnified.
28. When two or more thin lenses are in close combination, the	(c) Virtual, inverted and magnified.
total focal length of the combination is given by:	(d) Virtual, erect and magnified.
a) Reciprocal of total focal length is equal to the algebraic	20. Magnifying power of a magnifying glass a given by:
sum of reciprocals of focal lengths of individual lenses.	(a) $M = d/f$.
b) Reciprocal of total focal length is equal to the difference	(b) $M = 1 + d/f$.
of reciprocals of focal lengths of individual lenses.	(c) $M = 1 - d/f$.

(d) M = 1 + f/d

- c) Reciprocal of total focal length equal to the sum of focal length of individual lenses.
- d) Reciprocal of total focal length equal to the difference of focal

36. Eye piece of a compound microscope is used as:(a) Convex lens .	29. If combination of two convex% lenses is such that if parallel rays enter the combination rays leaving the
(b) Power lens.	combination are also parallel, then the distance
(c) Erecting lens.	between the lenses will be equal to:
(d) Magnifying galas.	a) Sum of their focal lengths.
37. Final image formed by a compound microscope is:	b) Difference of their focal lengths.
(a) Real, erect with respect to the object and magnified.	c) Sum of reciprocals of their focal lengths.
(b) Real, inverted with respect to the object and magnified.	d) Difference of reciprocals of their focal lengths.
(c) Virtual, erect with respect to the object and magnified.	30. In a compound microscope the focal length of the eye
(d) Virtual, inverted with respect to the object and	piece is:
magnified.	a) Shorter than that of objective.
38. Magnification produced by the objective of a compound	b) Longer than that of objective.
microscope is given by:	c) Equal to the focal length of the objective.
(a) $M_o = q^o/p^o$.	31. In an astronomical telescope focal length of the eye
(b) $M_0 = f_0/d$	piece is:
(c) $M_o = q_o/f_o$	a) Shorter than that of objective.
(d) $M_0 = p_0/q_0$	b) Longer than that of objective.
39. Magnification produced by the eye piece of a compound	c) Equal to the focal length of the objective.
microscope is given by:	32. Lens of large aperture is used in a telescope so that:
(a) $M_o = f_c/d$	a) The final image as seen through the telescope is
(a) $M_0 = f_0/d$ (b) $M_0 = f_0/d$	
(b) $M_0 = 1_0/0$ (c) $M_0 = 1 - d/f_c$	b) The final image as seen through the telescope is
(d) $M_c = 1 + f_o/ds$	bright.
40. Total magnifying power of a compound microscope is given	c) The telescope is more powerful.
	d) The telescope has higher magnifying power.
(a) $M = q_o/p_o (1 - d/f_c)$	33. Velocity of light in vacuum is:
(b) $M = q_o/p_o (1 + d/f_c)$	a) 3×10^8 m/s.
(c) $M = q_o/p_o (d/f_c - 1)$	b) $3x10^8$ cm/s.
(d) $M = q_o/p_o (d/f_c + 1)$	c) $3x10^{8}$ ft/s.
41. The objective of a microscope forms:	d) 3x10 ⁸ km/s.
(a) Virtual, inverted and magnified image.	34. The power of a convex lens of focal length 5 cm, is: (8-
(b) Virtual, erect and magnified image.	a iii,2001)
(c) Real, erect and magnified image.	a) 1 Diopter.
(d) Real, erect and magnified image.	b) 5 Diopter.
42. Final image as seen through the eye piece of an	c) 20 Diopter.
astronomical telescope is:	d) 0.2 Diopter.
 Larger than the actual object. 	35. A student is wearing glasses of power 2.5 Diopter. The
 Lager than the apparent size of the object. 	corresponds to the focal length of: (7-a iii, Pre-
 Very small as compared with the actual object 	med.2002)
• A and b	• 25 cm.
• B and c	• 60 cm.
43. Power f convex lens of focal length 10cm, is:	• 50 cm.
• + 10 diopter.	• 40 cm.
• - 10 diopter.	
• 0.1 diopter.	
 1.0 diopter. 	
- 1.0 diopter.	

44. Two convex lenses of the same focal length f. are kept 51. The magnifying power of a magnifying glass of focal toughing each other. The focal length of the combination length 25 cm is (8a iii pre med 03) will be: (8-a ii, Pre-med.2002) a) ½. a) F. b) 1. b) 0.5 f. c) Zero. c) 2f. d) 2. d) 2f + 2. 52. If a single convex lens is placed close to the eye it is 45. The power of a convex lens of focal length 50 cm, is: 7-a being used as: (7a ii pre-eng 03). a) Compound microscope. iii,pre-Eng,02) a) ½ Diopter. b) Telescope. b) 2 Diopter. c) Simple microscope. c) 1/50 Diopter. d) Spectroscope. d) 50 Diopter. 53. The unit of power of a lens is: 46. An astronomical telescope when focused for infinity with a) Watt. $f_o = 60$ cm, and $f_c = 3$ cm, has it's length equal to: (8-a I, b) Joule. Pre-Eng, 2002) c) Diopter. d) Newton. a) 63 cm. 54. If an object is placed at 2F of a convex lens. The image b) 20 cm. c) 57 cm. will be formed at: d) 180 cm. a) 2 F. 47. The characteristic property of light which does not change b) 4 F with the medium is: (8-a ii, pre-Eng, 2002) 3 F. c) F. a) Frequency. d) 55. Chromatic aberration is caused by: 98-a ii, 04) b) Wavelength. c) Velocity. a) Reflection. 48. A defect of eye called myopia can be corrected by using b) Dispersion. the : (8-a iii Pre-Eng,02) c) Refraction. a) Convex lens. 56. The power of a convex lens of focal length 50 cm, is: (8-a b) Concave lens. ii 04) c) Bifocal lens. a) 0.5 diopter. 49. A monochromatic beam of light is entering from one b) - 2 diopter. medium into another. The property which remains c) 2 diopter. unchanged is: (7-a ii Pre-Eng,03) 57. The defect of lens which can be easily corrected by a) Amplitude. reducing its aperture is known as: (8-a I 05) b) Velocity. a) Spherical aberration. c) Frequency. b) Astigmatism. d) Wave length. c) Chromatics aberration. 50. The dispersion of white light after passing through a prism d) Hyperbola. is due to (8-a ii Pre-med,02) 58. Two thin convex lenses each of focal length 10 cm are placed in contact with each other. Their equivalent focal a) Different intensities. b) Different amplitude. length will be: 8-a ii 05) c) Different temperature. a) 20 cm. d) Different wave length. b) 10 cm. c) 5 cm. d) 100 cm.

66. If a single lens is placed close to an eye, it is used as: (7-a ii	59. Two convex lenses of the same focal length "f is
2006)	combined together. The focal length of the
a) Compound microscope.	combination lens is: (8-a iii 2007)
b) Spectroscope.	a) 2 f.
c) Telescope.	b) F12.
d) Simple microscope.	c) 2 + f.
67. Light yea is the unit of: (8-a I 2006)	d) 2 – f.
a) Energy.	60. The power of a concave lens of focal length 50 cm is:
b) Time.	(7-a I 2008)
c) Distance.	a) 0.5 diopter.
d) Intensity.	b) - 0.5 diopter.
68. In Galilean telescope the final image formed is: (8-a ii	c) 2 diopter.
2006, 2008)	d) - 2 diopter
a) Real & erect.	61. In case of the shortsightedness the image of an object
b) Virtual & inverted.	is formed: (8-a ii 2008)
c) Real & erect.	a) On the retina.
d) Virtual & erect.	b) In front of retina.
69. If an astronomical telescope has an objective of focal	c) Behind retina.
length 90 cm, and the focal length of its eyepiece is 10 cm	d) At least distance of distinct vision.
the length of the telescope will be:	62. The convex lenses of same focal length "f are kept in
a) 9 cm.	contact with each other. The focal length of the
b) 100 cm.	combined lens will be: (10-v, 2009)
c) 80 cm.	a) 2 f.
d) None of these.	b) F 12.
70. Chromatic aberration can be reduced by using a	c) 21 f.
combination of: 7-a ii 2007)	d) F.
a) Two converging lenses.	63. If the power of a converging lens is 4 diopters, what is
b) Two diverging lenses.	the focal length of the lens?
 A diverging and a converging lens of different 	a) 20 cm.
material.	b) 25 cm.
71. The phenomenon of light which proves that light waves are	c) 10 cm.
transverse is:	d) 50 cm.
a) Reflection.	64. By using adjustable aperture of a lens we can reduce
b) Refraction.	the defect of the lens which is called:
c) Interference.	a) Astigmatism.
d) Polarization.	b) Chromatic aberrations.
72. Diffraction of X-rays can be studied by using: 8-a ii 2007)	c) Spherical aberration.
a) A thin film.	d) None of these.
b) Diffraction grating.	65. The magnifying power of a lens of focal length 25 cm
c) Rock salt.	is: (1-xvi 2011)
d) None.	a) ½.
	b) 1.
	c) Zero.
	d) 2.

ANSWERS

(37)Answers b, c and d.	(1) + 10 diopter.
(38)All of these.	(2) Sum of their focal lengths.
(39)All of these.	(3) Longer than that of the objective.
(40)Real, inverted and beyond C.	(4) Shorter than that of the objective.
(41)Virtual image for all object distances.	(5) The final image as seen through the telescope is bright.
(42)The object is between F and pole of the mirror.	(6) 3×10^8 m/s.
(43)Principle axis.	(7) 20 diopter.
(44)At F.	(8) 40 cm.
(45)Convex lens.	(9) 0.5 f.
(46)Converging lens for all object distances, except when the	(10) 2 diopter.
object is between F and optical centre.	(11) 63 cm.
(47)Diverging lens for all object distances.	(12) Frequency.
(48)Images formed by a convex lens are blurred.	(13) Convex lens.
(49)Using only the middle portion of convex lens.	(14) Frequency.
(50)Images formed by a convex lens are slightly colored at the	(15)Different wave length.
edges.	(16) 2.
(51)Dispersion of light.	(17)Simple microscope.
(52)Power of a lens.	(18) Diopter.
(53)Diopter.	(19) At 2F.
(54)Positive.	(20)Dispersion.
(55)Negative.	(21) -2 diopter.
(56)The algebraic sum of powers of individual lenses.	(22) Spherical aberration.
(57)Reciprocal of total focal is equal to the algebraic sum of	(23) 5 cm.
reciprocals of focal lengths of individual lenses.	(24) Simple microscope.
(58)Aperture of lens.	(25) Distance.
(59)Least distance of distinct vision.	(26) Virtual and erect.
(60)25 cm.	(27) 100 cm.
(61)Object is between F and optical centre and the virtual	(28)A diverging and a converging lens of different material.
image is formed at the least distance of distinct vision.	(29) Polarization.
(62)Visual angle.	(30) Rock salt.
(63)Virtual, erect and magnified.	(31) F/2.
(64)M = 1 + d/f.	(32) - 2 dioper.
(65)Magnifying glass.	(33) Behind the retina.
(66)Virtual, inverted with respect to the object and magnified.	(34) F / 2.
(67) $M_o = q_o/p_o$.	(35) 25 cm.
(68) $M_c = 1 + d/f$.	(36) Spherical aberration.
(69) $M = q_0/p_0 (1 + d/f_c)$.	
(70)Real, inverted and magnified image.	2. (Used as a magnifying glass)
(71)Real, inverted and small image.	
(72)Answers b and c.	