Al-Saudia Virtual Academy www.pakistanonlinetuition.com

Chapter no.4

MCQs

Motion In Two Dimensions

- 1. Projectile motion is:
 - (a) One dimensional
 - (b) Two dimensional
 - (c) Three dimensional
 - (d) Multi-dimensional
- 2. For projectile motion:
 - (a) A body must be thrown vertically
 - (b) Body must have constant horizontal velocity.
 - (c) Body must fall under the action of gravity.
 - (d) Body must have a constant horizontal velocity and at the same time it must fall freely under the action of gravity.
- 3. Vertical component of velocity of a projectile is zero at:
 - (a) The point of projection
 - (b) At the target
 - (c) At the highest point
 - (d) None of these
- 4. Velocity of a projectile is maximum at:
 - (a) The highest point
 - (b) The point of projection
 - (c) The target point
 - (d) A and b
 - (e) B and c
- 5. Total time of flight of a given projectile depends upon:
 - (a) Angle of projection
 - (b) Initial velocity
 - (c) Weight of the projectile
 - (d) A and b
 - (e) B and c
- 6. Horizontal range of a projectile depends upon:
 - (a) Initial velocity
 - (b) Angle of projection
 - (c) Weight of projectile
 - (d) A and b
 - (e) A and c
- 7. If air resistance is not negligible then:
 - (a) Horizontal range of the projectile deceases.
 - (b) Time of flight becomes short
 - (c) Vertical range decreases
 - (d) A and b

- 8. Horizontal range of a projectile is maximum when it is fired at an angle of:
 - (a) 30°
 - (b) 45°
 - (c) 60°
 - (d) 90°
- 9. A given projectile has equal horizontal range for two angles of projection. If 0 is the smaller of the two angles then the larger angle is given by:
 - (a) $0' = 90^\circ + 0$
 - (b) $0' = 180^{\circ} + 0$
 - (c) $0' = 180^{\circ} 0$
 - (d) $0' = 180^\circ + 0$
- 10. A projectile fired at 30° and 60° has the same horizontal range but its time of flight will be longer for:
 - (a) 30° angle
 - (b) 60° angle
 - (c) Equal time for both the angles.
- 11. In order to hit a mobile target (such as an enemy tank etc.) it is better to fire a projectile at smaller of the two possible angles because:
 - (a) Trajectory of the projectile will be flat.
 - (b) Time of flight will be short.
 - (c) Effect of air resistance will be negligible.
- 12. The trajectory of a projectile is:
 - (a) Straight line
 - (b) A circle
 - (c) Hyperbola
 - (d) Parabola
- 13. S.I unit of angular displacement is:
 - (a) 0
 - (b) Degree
 - (c) Radian
 - (d) Stradian
- 14. When distance covered by a body along a circular path is equal to radius of the circular path then the angle subtended at the center will be equal to:
 - (a) 1 degree
 - (b) 1 radium
 - (c) 1 stradian
 - (d) 1 minute

45. For a complete neurolation the encoder displacement of the	
15. For a complete revolution the angular displacement of the	25. Angular velocity of a body moving along a circular path is
body will be:	directed:
(e) Л radian	(a) Towards the center of the circular path.
(f) 2Л radian	(b) Away from the center of circular path.
(g) Л/2 radian	(c) Perpendicular to the axis of rotation.
(h) Л/4 radian	(d) Along the axis of rotation.
16. Centripetal acceleration is due to:	26. The magnitude of centripetal force required to keep a
(a) A change in magnitude of velocity.	body in motion along a circular path is given by:
(b) A change in direction of velocity	(a) $F_c = m v/r$
(c) A change in unit of velocity	(b) $F_c = m v^2 / r$
(d) A change in magnitude and direction of velocity	(c) $F_{c} = m^{2} v/r$
17. Centripetal acceleration is directed:	(d) $F_c = m v/r^2$
(a) Towards the center of circular path	27. Friction between road and tyres of a car moving along a
(b) Away from the center of circular path	circular track provides.
(c) Along the tangent to the circular path	(a) Centripetal acceleration.
18. Tangential acceleration is directed:	(b) Centripetal force
	(c) Centrifugal force
(a) Towards the center of circular path	(d) Angular momentum
(b) Away from the center of circular path	28. If speed of the body is doubled then the centripetal force
(c) Along the tangent to the circular path	required to keep it in motion along the circular path of same
10. A body moving with abanding around along a signilar path	radius will have to be:
19. A body moving with changing speed along a circular path has:	(a) Doubled
(a) Centripetal acceleration	(b) Tripled
(b) Tangential acceleration	(c) Quadrupled
(c) Centripetal and tangential acceleration both.	(d) Decreased by two times
20. Angle between centripetal and tangential accelerations is:	29. Angular acceleration is directed:
(a) 0°	a) Towards the centre of the circular path
(b) 30°	b) Away from the centre of the circular path
(c) 60°	c) Along the tangent to the circular path
(d) 99°	
21. Magnitude of the resultant of centripetal accelerations is:	d) Along the axis of rotation
(a) $A = ar_2 + a_c$	30. A body moving along a circular path may have constant:
(b) $A = a_c + ar^2$	a) Speed
(c) $A^2 = \sqrt{a^c + ar^2}$	b) Velocity
(d) $A = \sqrt{a_c^2 + ar^2}$	c) Acceleration
22. Different points on are removing disk moves with:	d) Momentum
(a) Constant linear but different angular velocity	31. One radian is equal to:
	a) 1°
(b) Different linear but constant angular velocity	b) 5.73°
 (c) Constant linear and angular velocities. (d) Different linear and angular velocities. 	c) 57.3°
(d) Different linear and angular velocities	d) 573°
23. Linear and angular velocities are related by: $(a) = \frac{(1)}{2} (a)$	32. The range of a projectile becomes half of its maximum
(a) $v = {}^{(1)}/r$	value if the angle of projection is:
$(b) \stackrel{\circ\circ}{=} r v$	a) 15°
(c) $V = r^{(1)}$	b) 30°
24. At any instant the linear velocity of a boy moving along a	c) 45°
circular path is directed:	d) 60°
(a) Towards the center of the circular path.(b) Away from the center of circular path.	
(b) Away from the center of circular path.(c) Along the tangent to circular path.	

(d) None of these.

33. The relation between length of an areas radius r and angle	41. S.I unit of angular velocity is: (3-a ii, 2000)
0 subtended by the are at the centre is:	a) m/s
a) S = r 0.	b) Radian/sec.
b) S = r/0	c) deg. /sec.
c) $0 = s/r$	d) rev./sec
d) R = 0/s	42. When a body moves along circumference of a circle with
34. Angle subtended at the centre of a circle for one complete	uniform speed, changer; take place in it's: (3-a iii, 2000)
revolution of a body is 360* the value of this angle in radar,	a) Linear velocity.
will be:	b) Tangential acceleration.
a) Л radian	c) Both.
b) 2Л radian	43. When a body moves along a projectile path, which
c) 3 <i>J</i> radian	component of its velocity does not change: (3-a iv, 2000?)
d) 4Л radian	a) Horizontal.
35. Rate of angular displacement of a body is known as:	b) Vertical.
a) Angular speed.	44. One radian is equal to: (3-a l, 01)
b) Angular velocity.	a) 57.3°
c) Angular acceleration.	b) 0.017°
	c) 35.7°
· •	d) 1°
36. Direction of angular velocity can be determined by:	
a) Law of Sine.	45. Every point on a rotating rigid body has the same: (3-a ii,
b) A right hand rule.	2001)
c) Left hand rule.	a) Liner velocity.
d) Law of cosine.	b) Linear momentum.
37. Whenever a body is moved along a circular	c) Angular velocity.
pathis needed to keep it moving along the path.	d) Linear acceleration.
a) Force	46. The angle between centripetal acceleration and
b) Centripetal force	tangential acceleration is: (3-a iii, 2001)
c) Centrifugal force	a) 0°
d) Momentum	b) 90°
38. Rate of change of angular velocity is called:	c) 180°
a) Angular frequency.	d) 45°
b) Angular speed.	47. If a projectile is launched at 45° with a velocity of 100 m/s,
c) Angular acceleration.	it hits the target. It will have double the range if its velocity is:
d) Angular momentum.	(4-a I, pre-med.2002)
39. Every point on a rotting body has constant: (3-a ii, 1996)	a) 141.4 m/s
a) Linear velocity	b) 200 m/s
b) Angular velocity	c) 173.2 m/s
c) Angular momentum	d) 400 m/s
40. The range of a Ghori missile is: (3-2 iii, 1998)	48. If projectile is thrown at an angle of 35° it hits a certain
a) 1500 km.	target. It will have the same range if it is thrown at an angle
b) 2000 km	of: (4-a iii, pre-med. 2002)
c) 2500 km	a) 45 ⁰
41. Maximum height of a projectile depends on: (3-a I, 2000)	b) 55 ⁰
a) Angle of projection.	c) 10 ⁰
b) Velocity of projection.	d) 7c ^o
c) Both angle and velocity.	
,	

49. Due to presence of air resistance the total time of flight of	56. If ∞ is the angular speed of a particle moving in a circle of
a projectile:	radius 'r', the centripetal acceleration will be:
a) Remains the same.	a) w r
b) Decreases.	b) ωr^2
c) Becomes zero.	c) ω^2 r
d) Increases.	57. Every point on a rotating body has the same: (4a ii 04)
50. A projectile is fired with the initial velocity of 90 m/s to hit	a) Linear velocity
a ground level target. Its maximum range will be: (4-a iii, pre-	b) Angular velocity
ded.2003)	c) Linear acceleration
a) 9.2 m	58. When a body moves with a constant speed in a circle; (2a
b) 826.5 m	iii, 05)
c) 41.3 m	a) It's velocity is changing
d) 81 m	b) It's acceleration is zero
51. In projectile motion a body moves with: (3-a iii, pre-	
	c) It's acceleration is increasing
Eng.2003)	d) It's velocity is uniform
a) Constant vertical component of velocity.	59. The angle between centripetal acceleration and
b) Constant horizontal component of velocity.	tangential acceleration is; (3a I, 05)
c) Both changing horizontal and vertical components of	a) 0°
velocity.	b) 90°
d) Horizontal component changing but vertical	c) 180°
component of velocity constant.	d) 45°
52. If r is the linear and angular velocities are: (4-a ii, pre-	
med.2002)	60. One radian is equal to:
a) $\rightarrow = \rightarrow x \rightarrow r$	a) 0.017°
b) $\rightarrow = \rightarrow x \rightarrow$	
$V a \omega$	b) 57.3°
v' = v' + r'	c) 35.7°
d) $\rightarrow = \rightarrow x \rightarrow v$	^{d)} 0.117°
53. The centripetal acceleration of a body moving along, a	61. If " \rightarrow " is the radius of the circular path of a particle, it's
circle is:	r
а) 4T ² r/Л ²	linear Acceleration " $\rightarrow a$ " and angular acceleration " $\rightarrow a$ " are
b) 4 Л ² r/T ²	related by:
c) $4r^2T^2/\Lambda^2$	
d) 4Л ² /T ² r	a) $\rightarrow = \rightarrow x \rightarrow r$
54. A body is moving along a circle with an increasing speed. It	b) $\rightarrow = \rightarrow x \rightarrow$
possesses:	$\begin{array}{ccc} a & r & a \\ c & \rightarrow = \rightarrow \mathbf{X} \rightarrow \end{array}$
a) Tangential acceleration a_{T} only.	$\alpha a r$
b) Centripetal acceleration a_c only.	d) $\rightarrow = \rightarrow \rightarrow \alpha$
c) Both tangential and centripetal accelerations (a_{T} and	
a _c)	62. Centripetal force is also called: (2a I 07)
d) No acceleration.	a) Contrifugal force
55. The motion on a curved path when one component of	a) Centrifugal force
velocity is constant and the other is variable is called: (2a ii	b) Centre seeking force
04)	c) Tangential force
	d) Non
-	
b) Projectile motion	
c) Vibratory motion	
	1

63. The rate of change of angular momentum with respect to time: (2a ii 07) a) Force b) Angular velocity c) Angular acceleration d) Torque 64. An angle subtended at its centre by an arc whose length is equal to its radius is: (2a ii 08) a) 37.3° b) 47.3° 57.3° c) d) 67.3° 65. Two particles A and B are thrown up with the same speed at an angle of 60° and 30° respectively. With the horizontal, then: a) The range of A will be greater. b) The range of B will be greater. The range of A and B will be the same. c) d) The range is independent of the angle. 66. A body moving along a circular path with an increasing speed possesses: a) Tangential acceleration only. b) Centripetal acceleration only. Both tangential and centripetal accelerations c) 67. A projectile is thrown at an angle of 30° with the horizontal having a certain initial velocity. It will have the same range if thrown with the same velocity at an angle of (4-I, 2009) 45° a) 60° b) 75° c) d) 15° 68. The horizontal range of a projectile depends upon: a) The angle of projection. b) The velocity of projection. '9' at the place. c) d) All of them. 69. When the angular velocity of a disk increases, angular acceleration a and angular velocity ∞ are: Parallel. a) b) Non parallel. Perpendicular c) d) None of these. 70. the rate of change of angular momentum with respect to time is: 1-viii, 2011) a) Force. b) Angular velocity. c) Angular acceleration. d) Torque.

ANSWERS

- 1. Two dimensional.
- 2. Body must have a constant horizontal velocity and at the same time it must fall freely under the action of gravity.
- 3. At the highest point.
- 4. B and c.
- 5. A and b.
- 6. A and b.
- 7. A and b.
- 8. 45°.
- 9. $0' = 90^{\circ} 0.$
- 10. 60° angle.
- 11. Time of flight will be short.
- 12. Parabola.
- 13. Radian.
- 14. 1 radian.
- 15. 2Л radian.
- 16. A change in direction of velocity.
- 17. Towards the centre of circular path.
- 18. Along the tangent to the circular path.
- 19. Centripetal and tangential accelerations both. 20. 90°.
- 21. A = $\sqrt{a_{c}^{2}} + a_{T}^{2}$.
- 22. Different linear and constant angular velocity.
- 23. V = r∞.
- 24. Along the tangent to the circular path.
- 25. Along the axis of rotation.
- 26. $F_c = m v^2/r$.
- 27. Centripetal force.
- 28. Quadrupled.
- 29. Along the axis of rotation.
- 30. Speed.
- 31. 57.3°
- 32. 15°.
- 33. S = r 0.
- 34. 2Л radian.
- 35. Angular velocity.
- 36. Right hand rule.
- 37. Centripetal force.
- 38. Angular acceleration.
- 39. Constant angular velocity.
- 40. 2500 km.

- 41. Both angle and velocity.
- 42. Radians/sec.
- 43. Linear velocity.
- 44. Horizontal.
- 45. 57.3°
- 46. Angular velocity. 47.90°.
- 48. 141.4 m/s.
- 49. 55°.
- 50. Decreases.
- 51. 826.5 m/s.
- 52. Constant horizontal component of velocity.
- 53. $\rightarrow V = \rightarrow X \rightarrow r$
- 54. 4Л²r/T²
- 55. Both tangential and centripetal accelerations ($a_T \& a_c$)

dem

- 56. Projectile motion.
- 57. ω² r
- 58. Angular velocity
- 59. Its velocity is changing.
- 60. 90°
- 61. 57.3°
- $62. \xrightarrow{a} = \xrightarrow{r} \mathbf{x} \xrightarrow{\alpha}$
- 63. Centre seeking force.
- 64. Torque.
- 65. 57.3°
- 66. The range of A and B will be the same.
- 67. Both tangential and centripetal accelerations.
- 68. 60°
- 69. All of them.
- 70. Parallel.
- 71. Torque.

Alsometra barrent