AL-Saudia Virtual Academy

www.pakistanonlinetuition.com www.onlinetutorpakistan.com

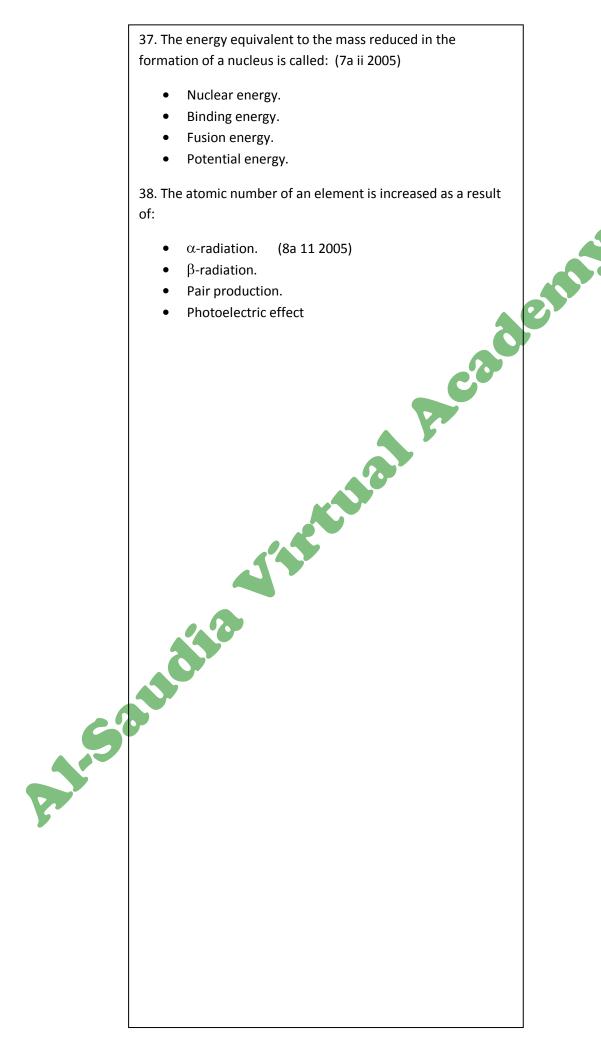
The Atomic Nucleus Chapter 19 MCQs

- 1. Charge on an electron is:
 - + 1.6021 x 10⁻¹⁹ C.
 - - 1.6021 X 10⁻¹⁹ C.
 - - 1.6021 X 10⁻²⁰ C.
 - + 1.6021 x 10⁻²⁰ C.
- 2. Rest mass of electron is:
 - 9.1 x 10⁻³¹ g.
 - 9.1 x 10⁻³¹ kg.
 - 1.67 x 10⁻²⁷ kg.
 - 1.67 x 10⁻²⁷ g.
- 3. Rutherford bombarded thin gold foil and observed their scattering. His experiments proved the existence of.
 - Electrons revolving around the nucleus.
 - Protons in the nucleus.
 - Neutrons in the nucleus.
 - A high density positively charged nucleus.
- 4. It "Z" is the atomic number (or number of protons) and "A" is its atomic weight then the number of nucleons in the nucleus will be:
 - \bullet N = A + Z.
 - N = A Z.
 - N = A x Z.
 - N = Z A.
- 5. The total number of protons present in a nucleus is called:
 - Mass number.
 - Atomic weight.

Atomic number of charge number

- 6. 1 atomic mass unit (amu) is equal to:
 - 1.66x10 ⁻³¹ kg.
 - 1.66x 10^{-31 g.}
 - 1.66 x 10 ⁻²⁷ kg.
- 7. Atoms of the same element (equal atomic number Z) but of different mass number are called:
 - Isotopes.
 - Isobars.
 - Isomers.
 - Allotropes.
- 8. In $_1\text{H}^3$ (an isotope of hydrogen) there are:
 - 2 neutrons.
 - 3 neutrons.
 - 4 neutrons.
- 9. The process of spontaneous emission of α , β and y-rays from the nucleus of heavy elements is called:
 - Photoelectric effect.
 - Compton Effect.
 - Fission reaction.
 - Radioactivity.

 $10.\alpha$, β and y-rays can penetrate matter, the distance through which they penetrate is a measure of their penetrating power. The highest penetrating power is of:


- α Particles.
- β Particles.
- Y-rays.

- 11. While passing through matter, α , β and y-rays ionize its atoms. Which one is most ionizing (i.e. produces more ions than the others):
 - α Particles.
 - β Particles.
 - Y-rays.
- 12. A radioactive nucleus $_zX^A$ emits a α particle, the nucleus left behind called <u>daughter nucleus</u>. Daughter nucleus will be:
 - 7-2 YA-2
 - _{z-2} Y^A-⁴.
 - $_{7+2}Y^{A}-^{4}$
 - _{z+2} Y^A -^{6.}
- 13. A radioactive nucleus ${}_{z}X^{A}$ emits a β particle, the nucleus left behind is called <u>daughter nucleus</u> daughter nucleus will be:
 - z -1 Y^{A.}
 - 7 + 1 Y^A.
 - YA + 1
 - \bullet $_{z+1}$ $Y^{A=1}$.
- 14. Time in which half of the original radioactive nuclei decay is called:
 - Decay constant.
 - Half life.
 - Half activity.
 - Decay series.
- 15. Decay constant λ and half life T $\frac{1}{2}$ of an element is related by:
 - $\lambda + T \frac{1}{2} = 0.693$.
 - $\lambda T \frac{1}{2} = 0.693$.
 - $\lambda/T \frac{1}{2} = 0.693$.
 - T $\frac{1}{2}/\lambda = 0.693$.
- 16. Gamma rays (y-rays) are:
 - Positively charged particles.
 - Negatively charged particles.
 - Neutral particles.
 - High energy electromagnetic waves.

- 17. The nuclei having the same mass number but different atomic number are called: (8-a, 2001)
 - Isotopes.
 - Isobars.
 - Isotones.
 - Isomers.
- 18. In radioactive decay law, N = $N_o e^{-\lambda t}$, λ represents: (7-a, 02, P.M)
 - Wavelength.
 - Half life.
 - Mass of radioactive sample.
 - Decay constant.
- 19. Wilson cloud chamber is used: (8-a, 2002, P.M)
 - For the study of clouds.
 - To produce X-rays.
 - To take photograph of high velocity ions.
 - To produce β -particles.
- 20. Breeder reactor is used to convert: (8-a, 2002, P.M)
 - 92U²³⁵ into 92U²³⁶.
 - 92U²³⁸ into 92U²³⁹.
 - $_{92}U^{235}$ into $_{56}Ba^{144}$ and $_{36}Kr^{89}$.
 - ₉₂U²³⁵ into ₉₂U²³⁷.
- 21. The process in which heavier nuclei is formed from the combination of lighter nuclei is called: (8-a, 02, P.M)
 - Fission.
 - Fusion.
 - Radioactivity.
 - Mass deficit.
- 22. Nuclear force is:
 - Very strong.
 - Short range.
 - Attractive.
 - Keeps the nucleons together.
 - All of these.

- 23. Binding energy of a nucleus is:
 - The amount of energy required to split a nucleus into its constituent nucleons.
 - The energy released when nucleons of a given nucleus are fused together.
 - According to Einstein's special theory of relativity, it is the energy which corresponds to mass defect of the nucleus.
 - All of these.
- 24. Process of splitting a nucleus into lighter nuclei with the release of energy is called:
 - Photoelectric effect.
 - Radioactivity.
 - Fission reaction.
 - Fusion reaction.
- 25. In a nuclear reactor...... Reaction takes place.
 - Photoelectric effect.
 - Radioactivity.
 - Fission reaction.
 - Fusion reaction.
- 26. Any suitable material which can be used in a nuclear reactor to slow down fast neutrons is called:
 - Coolant.
 - Moderato.
 - Energy absorber.
 - Decelerator.
- 27. In an atom bomb.....reaction is allowed to proceed in an uncontrolled manner due to which huge amount of energy is released.
 - Photoelectric effect.
 - Radioactivity.
 - Fission reaction.
 - Fusion reaction.
- 28. The process of combining two or more light nuclei to form a heavier nucleus with the release of energy is called:
 - Fission reaction.
 - Fusion reaction.
 - Photoelectric effect.
 - Chain reaction.

- 29.reaction takes place in the sun and other stars, it is the source of their tremendous amount of energy:
 - Fission reaction.
 - Fusion reaction.
 - Photoelectric effect.
 - Radioactivity.
- 30. In fission and fusion reactions energy is released due to:
 - The breaking of bonds.
 - Combustion process.
 - Some other chemical reaction.
 - Conversion of matter into energy.
- 31. α -particles are:
 - Positively charged particles.
 - Negatively charged particles.
 - Neutral particles.
 - High energy electromagnetic waves.
- 32. y-rays are:
 - Positively charged particles.
 - Negatively charged particles.
 - Neutral particles.
 - High energy electromagnetic waves.
- 33. β-particles are:
 - Positively charged particles.
 - Negatively charged particles.
 - Neutral particles.
 - High energy electromagnetic waves.
- 34. When an element emits a y-ray photon its charge and mass number:
 - Both increase by one unit.
 - Both <u>decrease</u> by one unit.
 - Charge number <u>increases</u> but mass number <u>decrease</u> each by one unit.
 - There is no change in both.
- 35. Which of the following particles is the most suitable for inducing nuclear reaction?
 - Electrons.
 - Protons.
 - Neutrons.
 - A-particles.
- 36. The disintegration of a photon into electron and positron near a heavy nucleus is known as:
 - Annihilation. (8a I 2004)
 - β-decay.
 - α-decay.
 - Pair production.

ANSWERS

- (1) -1.6021 x 10⁻¹⁹ C.
- (2) $9.1 \times 10^{-31} \text{ kg}$.
- (3) A high density positively charged nucleus.
- (4) N = A Z.
- (5) Atomic number or charge number.
- (6) 1.66 x 10 -²⁷ kg.
- (7) Isotopes.
- (8) 2 neutrons.
- (9) Radioactivity.
- (10)Y-rays.
- (11) α Particles.
- $(12)_{z-2}Y^{A-2}$.
- $(13)_{z+1}Y^A$.
- (14) Half life.
- $(15)\lambda T \frac{1}{2} = 0.693.$
- (16) High energy electromagnetic waves.
- (17) Isomers.
- (18) Decay constant.
- (19) To take photograph of high velocity ions.
- $(20)_{92}U^{238}$ into $_{92}Pu^{239}$.
- (21) Fusion.
- (22) All of these.
- (23) All of these.
- (24) Fission reaction.
- (25) Fission reaction.
- (26) Moderator.
- (27) Fission reaction.
- (28) Fusion reaction.
- (29) Fusion reaction.
- (30) Conversion of mater into energy.
- (31)Positively charged particles.
- (32) High energy electromagnetic waves.
- (33) Negatively charged particles.
- (34) Here is no change in both.
- (35) Neutrons.
- (36) Pair production.
- (37) Binding energy.
- $(38)\beta$ -radiation.