Al-Saudia Virtual Academy

www.pakistanonlinetuition.com www.onlinetutorpakistan.com

Chapter no.7 MCQs Work, Power and Energy

1. 2. 3.	 When a body is displaced in a closed path in the gravitational field of the earth net work done is: (a) Positive. (b) Negative. (c) Maximum. (d) Zero. If a graph is plotted between force and the resulting displacement the area under the graph gives: (a) Work done. (b) Power delivered. (c) Kinetic energy. (d) None of these. S.I unit of work is: (a) N/m. (b) Dyne-m (c) Joule. 	8. 9. 10.	The scalar or dot product of applied force \xrightarrow{F} and displacement \xrightarrow{d} is called: (a) Torque. (b) Power. (c) Angular momentum. (d) Work. If θ is the angle between the applied force \xrightarrow{F} and the resulting displacement \xrightarrow{d} then the magnitude of work done is given by: (a) Work = F d Sin θ . (b) Work = F d Cos θ . (c) Work = F d tan θ . Work done has a maximum value when: (a) Force and displacement are in the same direction. (b) Force and displacement are perpendicular to each other. (c) Eorce and displacement are inclined at an angle of 45°
4. 5. 6.	 (a) Type-m (b) Dyne-m (c) Joule. (d) Watt. Work is a: (a) Scalar quantity. (b) Vector quantity. (c) Neither a vector nor a scalar. Work is said to be done when a force producesin a body. (a) Displacement. (b) Acceleration. (c) Torque. (d) Velocity. Ability of doing work is called: (a) Force. (b) Power. (c) Energy. (d) Elasticity. 	11. 12. 13.	 (a) Force and displacement are in the same direction. (b) Force and displacement are perpendicular to each other. (c) Force and displacement are inclined at an angle of 45°. (d) Force and displacement are opposite to each other. Work done by force of friction is negative, because: (a) Friction is parallel to the direction of displacement. (b) Friction is perpendicular to the direction of displacement. (c) Friction is always opposite to the direction of displacement. (c) Friction decreases efficiency. If a body slides down a friction less inclined plane no work is done by the component w Cos 0 of its weight, because (a) W Cos θ is perpendicular to displacement. (b) W Cos θ is perpendicular to displacement. (c) W Cos θ is inclined with respect to displacement. (d) W Cos θ is opposite to displacement.
	(a) Watt.(b) Horse power.(c) Joule.(d) Erg.		centripetal force is always perpendicular to displacement.c) Centripetal force is always opposite to displacement

14. When a spring is wound work is done on it, this work	22. When a piece of paper is burnt, is energy in the form of
done is stored in it as:	heat and light created in this process?
(a) Gravitational potential energy.	(a) Yes, energy is created due to the destruction of
(b) Kinetic energy.	matter.
(c) Winding energy.	(b) Yes, energy is created and matter changes its state.
(d) Elastic potential energy.	(c) Combustion is a simple chemical process, energy
15. To lift a body through a certain height "h" work has to	stored in the paper as bond energy etc. is released as
be done on it, this work done is stored in it as:	heat and light but matter is not destroyed, it changes
(a) Elastic potential energy.	its state.
(b) Kinetic energy.	(d) Law of conservation of matter is violated but law of
(c) Magnetic potential energy.	conservation of energy is obeyed.
(d) Gravitational potential energy.	23. A bullet thrown by hand can not kill an enemy but the
16. Fast bowlers throw the ball with a very high speed, to	same bullet fired from a gun can, because:
do so they spend large quantity of their muscular	(a) Bullet fired from a gun has large momentum.
energy, energy spent appears as:	(b) Bullet fired from a gun has large inertia.
(a) Potential energy of the ball.	(c) Bullet fired from a gun has large kinetic energy.
(b) Kinetic energy of the ball.	(d) A and b.
(c) Heat produced in the bowler's body.	(e) B and c
(d) Kinetic energy of the bowler.	(f) All of these.
17. Gravitational potential energy possessed by a body	24. A body in motion has the ability to d work, this ability of
lifted through small vertical height "h" is given by:	doing work due to motion is called:
(a) $\frac{1}{2}$ mv ² .	(a) Energy.
(b) Mgh.	(b) Kinetic energy.
(c) Mg/h.	(c) Potential energy.
(d) M h/g.	(d) Nuclear energy.
18. If a body is dropped, according to law of conservation	25. Ability of a body to do work due its position or
of energy (assuming there is no frictional force):	configuration is called:
(a) P.E lost. = K.E gained.	(a) Kinetic energy.
(b) P.E gained = K.E lost.	(b) Potential energy.
(c) K.E lost = momentum gained.	(c) Positional energy.
19. Rate of doing work is called:	26. Kinetic energy possessed by a body is given by:
a) Kinetic energy	(a) MV.
b) Energy.	(b) MV^2 .
c) work.	(c) $\frac{1}{2}$ m V.
d) Power.	(d) $\frac{1}{2}$ m v.
20. S.I unit of power is:	27. Energy possessed by a body due to position in the
a) Joule.	gravitational field of the earth is called:
b) Erg.	(a) Elastic potential energy.
c) Horse power.	(b) Field potential energy
 a) Watt. b) Watt. 	(c) Gravitational potential energy.
21. Kwn is the unit of:	(d) Magnetic potential energy.
a) POWER.	26. It mass and velocity of a body are doubled then it's kinetic
D) Energy.	(a) Two times
 d) Pate of doing work 	(a) TWO UTITIES.
uj kate ol doing WOrk.	(b) Four times.
	(c) light times.

(d) Sixteen times.

29. For a small vertical height potential energy possessed	36. Electron volt (ev) is the unit of:
by a body is "mgh" it is directly proportional to mass	a) Power.
of the body and vertical height through which it is	b) Voltage.
displaced, hence if mass "m" and vertical height "h"	c) Energy.
both are simultaneously doubled, then it's potential	d) Charge.
energy:	37. Dimensions of work re:
a) Increases by two times.	a) MLT.
b) Increases by four times.	b) ML ² T.
c) Increases by eight times.	c) $ML^2 T^2$.
d) Increases by sixteen times.	d) $ML^2 T^2$.
30. Which of the following is not the unit of power: (2-a	38. Dimension of power are:
ii, 2001 , 4-a iii, pre-Eng.02)	a) ML ² T ² .
a) Horse power.	b) ML ² T.
b) Joules/sec.	c) ML ² T ³ .
c) Kilowatt hour.	d) ML ² T ⁻³ .
d) Foot pound/sec.	39. Dimensions of energy are
31. One kilowatt hour is equal to:	a) MLT.
a) 3.6x10 ⁶ J.	b) ML ² T.
b) 36x10 ⁶ J.	c) ML ² T ²
c) 0.36x10 ⁶ J.	d) ML ² T ^{-2.}
d) 0.0036x10 ⁶ J	40. Absolute gravitational potential energy of a body of mass
32. When the direction of force is opposite to the	"m" at distance "R" from the center of earth is given by :
direction of displacement, then the work done will	a) $G m M_c / R_c$.
be: (4-a I, 2001)	b) G m M _c /R.
a) Positive.	\mathbf{C} G M _c /R.
b) Negative.	d) MM _c /R.
c) Zero.	41. Kinetic energy of a body is directly proportional to it's
d) None of them.	mass, it means that if mass of the body is doubled its
33. Watt-hour is the unit of: (2-a I, Eng.03)	kinetic energy:
a) Force.	a) Becomes double its initial value.
b) Acceleration.	b) Three times its initial value.
c) Energy.	c) Four times its initial value.
d) Velocity.	d) None of these.
34. One horse power is equal to: (3-a I, Pre.Eng.2003)	42. Kinetic energy of a body is directly proportional to square
a) 400 watt.	of it's velocity, it means that if mass of the body is
b) 580 watt.	doubled its kinetic energy:
c) 746 watt.	a) Becomes double its initial value.
d) 70 watt.	b) Three times its initial value.
35. The absolute P.E of a body of mass "m" in the earth's	c) Four times its initial value.
gravitational field is given by: (4-a ii, Pre-Eng.2002)	d) Eight time its initial value.
a) - G M _c m/r.	
b) $G M_c m/r^2$.	
c) G M _c m/r.	
d) $G M_c m/R_c^2$.	

- 43. Kilo-watt Hour is a unit of: 3a I 04)
 - a) Energy.
 - b) Power.
 - c) Time.
- 44. The work done by the centripetal force is always: 4a iii 04)
 - a) Positive.
 - b) Zero.
 - c) Negative.
- 45. Power is equal to.

a)
$$\xrightarrow{F} x \xrightarrow{d} / \xrightarrow{t} t$$

b)
$$\rightarrow . \rightarrow / \rightarrow$$

c)
$$\xrightarrow{F} \cdot \xrightarrow{d} \xrightarrow{f}$$

d)
$$\xrightarrow{F} x \xrightarrow{V}$$

cademy 46. If mass and speed both are doubled, the kinetic energy of a moving body : (4a iii,05)

- a) Increase 4 times.
- b) Increase 6 times.
- c) Increase 8 times.
- d) Remains the same.
- 47. The work done by a conservative field along a closed path
 - is: 4a-iii 08)
 - a) Positive.
 - b) Negative.
 - c) Zero.
 - d) None.
- 48. When a body moves vertically, the work done will be:
 - a) Positive.
 - b) Negative.
 - c) Zero.
 - d) Maximum.
- 49. If speed of a body is halved, its kinetic energy becomes:
 - (1-iii 2011)
 - a) One fourth.
 - b) Half.
 - c) Three times.
 - d) None of these.
- 50. The work done by a conservative force along a closed path
 - is: (1-xi 2011)
 - a) Positive.
 - b) Negative.
 - c) Zero.
 - d) None of these.

ANSWERS

1. Work.

- 2. Work = $F d Cos\theta$.
- 3. Force and displacement are in the same direction.
- 4. Friction is always opposite to the direction of displacement.
- 5. W Cos $\boldsymbol{\theta}$ is perpendicular to displacement.
- 6. Centripetal force is always perpendicular to displacement.
- 7. Zero.
- 8. Work done.
- 9. Joule.
- 10. Scalar quantity.
- 11. Displacement.
- 12. Energy.
- 13. Joule.
- 14. Combustion is a simple chemical process, energy stored in the paper as bond energy etc. is released as heat and light but matter is not destroyed, it changes its state.

10

- 15. All of these.
- 16. Kinetic energy.
- 17. Potential energy.
- 18. ½ m v².
- 19. Gravitational potential energy.
- 20. Eight times.
- 21. Elastic potential energy.
- 22. Gravitational potential energy.
- 23. Kinetic energy of the ball.
- 24. Mgh.
- 25. P. E lost = K.E gained.
- 26. Power.
- 27. Watt.
- 28. Energy.
- 29. Energy.
- 30. M $L^2 T^{-2}$
- 31. M L² T ^{-3.}
- 32. M L² T ⁻²
- 33. G m M_c/R
- 34. Becomes double its initial value.
- 35. Four times its initial value.
- 36. Increases by four times.
- 37. Kilowatt hour.
- 38. 3.6 x 10⁶ J.
- 39. Negative.
- 40. Energy.

n. 41. 746 Watt 42. - G M_e m/r. 43. Energy. 44. Zero. 45. $\rightarrow \cdot \rightarrow / \rightarrow \cdot$. acement. 46. Increase 8 times. 47. Zero. 48. Negative. 49. One fourth. 50. Zero. tored in nd light