Tag Archives: Online Tutor Saudi Arabia

Online Chemistry Tuition Pakistan

Online Chemistry Tuition Pakistan

In Search for best & Expert Online Chemistry Tutor?

Contact Us!

Online Chemistry Tutoring Service Pakistan

Online Chemistry Tuition Pakistan, Welcome to Al-Saudia Virtual Academy, the world’s best online chemistry tuition platform in Pakistan. We take immense pride in offering top-notch online tutoring services, making us Pakistan’s first and largest online tutor academy. With a strong focus on chemistry tuition, our expert tutors are dedicated to helping students excel in this complex subject. Whether you’re struggling with concepts or aiming to achieve academic excellence, our tailored approach to teaching ensures personalized attention and support. Join us at ASVA and embark on a transformative learning journey with our exceptional chemistry tutors, right from the comfort of your home. Let’s unlock the mysteries of chemistry together!

"</strong

Get the Best & Expert Pakistani Chemistry Tuition: 

If you’re seeking an expert chemistry tutor in Pakistan for online tuition, look no further! Tutors Academy in Karachi, Pakistan, offers exceptional online tutoring services, connecting you with highly qualified tutors who specialize in chemistry. With their extensive knowledge and teaching expertise, they ensure a seamless and enriching learning experience. For convenience, we provide online tuition in Karachi, Pakistan, where you can access private tutors from the comfort of your home. Whether you require assistance with fundamental concepts or want to excel in advanced chemistry topics, our expert online chemistry tutors are here to guide you. Contact us at +923323343253 or on Skype at ascc576, and take your chemistry knowledge to new heights with our dedicated team of tutors!

Best Academy of Chemistry in Pakistan

If you’re seeking a top-notch Chemistry Academy with expert online tuition in Pakistan, look no further! Our Chemistry Tutor Pakistan team at Tutors Academy Karachi offers exceptional online tutoring services, tailored to meet your individual learning needs. With a wealth of experience and in-depth knowledge, our dedicated tutors ensure a comprehensive understanding of the subject. Whether you require assistance with complex concepts or need help with exam preparation, our expert Chemistry tutor online is here to guide you every step of the way. For the finest online tuition in Karachi Pakistan, contact us at +923323343253 or reach us on Skype at ascc576. Unlock your true potential in Chemistry with our proficient and reliable Chemistry Academy.

Online Chemistry Tuition Pakistan  Academy

Pakistan largest online Tuition, Al-Saudia Tutor Academy site Pakistanonlinetuition.com has the best database of all levels of Chemistry tutors.
We do not charge you anything in form of commission for providing the professional Chemistry tutors.
Scoring perfect 100% in Chemistry is now definitely possible with the Chemistry online tuition assistance from our Chemistry tutors.

Find the Best Chemistry Tutors with Al-Saudia Tutor Academy

Experienced and Qualified Tutors:

With over 40 years of experience, Al-Saudia Tutor Academy offers top-class Chemistry tutors with expertise in the subject and years of teaching experience at all levels.

Effective Teaching Methods:

Our tutors are skilled in handling students and use innovative approaches to make Chemistry learning engaging. They provide excellent self-made notes, tests, and reference materials to ensure effective guidance.

Dedicated and Professional:

Our tutors are dedicated, professional, and passionate about helping students achieve their goals. They have a clear, soft-spoken voice, making online tuition sessions interactive and interesting.

Quality Tutoring:

Al-Saudia ensures quality tutoring by employing a tough selection process and continuous feedback from students. Thousands of satisfied customers vouch for our tutors’ effectiveness in delivering successful results.

Complete Support:

Chemistry tutors are available in Karachi and Lahore, and they offer complete support with timely notes, test papers, and reference books for comprehensive preparation.

Reach Your Targets:

Our tutors are committed to helping students reach their targets, whether it’s scoring 100% marks or excelling in Chemistry. Achieve success with the guidance of experienced Chemistry tutors from Al-Saudia Tutor Academy.

Online Biology Tuition Pakistan

Online Biology Tuition Pakistan

Call Us: +92-332-3343253

Skype Id: ascc576

Email at: info@pakistanonlinetuition.com

Welcome to Al-Saudia Virtual Academy, Online Biology Tuition Pakistan. Best and Expert Biology tutors for Edexcel, IGCSE, IB, CIE and other curricula, the world’s best online tutoring service in Pakistan.

ASVA is proud to be Pakistan’s first and largest online tutor academy, specializing in providing top-notch biology tuition to students across the country.

With our exceptional team of experienced tutors and cutting-edge virtual learning platform, we ensure a seamless and effective learning experience for all our students.

Online Biology Tuition Pakistan
online Biology Tuition, Best and Expert Tutors for IB, Edexcel, CIE, IGCSE

Comprehensive Online biology Tutoring Services in Pakistan

Unlock Your Academic Potential with Pakistan’s Premier Online Tuitions:

Looking for top-notch online tutoring services in Pakistan? Look no further! With over a decade of experience, a dedicated team of expert tutors, and a wide range of subjects, our online tutoring platform is here to help you achieve academic excellence.

Whether you need assistance in chemistry, biology, physics, maths, or A/O level exams such as Edexcel, IGCSE, GCSE, or AOA, our highly qualified tutors are ready to provide personalized guidance and support.

From Karachi, Pakistan to Dubai and Saudi Arabia, our online tuition services cater to students worldwide. Contact us today at +923323343253 or via Skype (ascc576) to unlock your full potential with the best tutors in the industry.

Pakistan Expert Online Tuition: Al-Saudia Tutor Academy site Pakistanonlinetuition.com has the best database of all levels of Biology tutors taking Tuition for students in Karachi.

High-Quality Biology Homework Help at Your Fingertips

Excel in Biology with our Exceptional Online Homework Help

Struggling with biology assignments? Look no further! Our carefully selected team of the best biology tutors is here to provide you with top-class online homework help.

Whether you’re in Karachi, Pakistan, or Lahore, our expert tutors are just a phone call away. With their extensive knowledge and experience, they guarantee exceptional results, with many students achieving perfect scores of 100%.

Don’t let biology problems hold you back – contact us now and experience the difference our dedicated tutors can make in your academic journey.

Unleash Your Biology Potential with the Best Online Tutors

If you’re in search of the best biology tutors, your search ends here at Al-Saudia Tutor Academy in Karachi, Pakistan.

With a rich experience of over 40 years, we have consistently provided top-class biology online tutors, along with tutors for other subjects, for one-to-one online sessions.

Our success stems from our massive advertising, marketing, and promotion efforts, which have attracted the most skilled biology instructors and clients alike.

Unmatched Expertise in Biology Tuition Services

At Al-Saudia Tutor Academy, we pride ourselves on our extensive database and network of biology tutors from all over the world.

Our selection process is rigorous, ensuring that only the best biology tuition tutors are chosen.

We verify their qualifications and maintain a continuous feedback system from students to guarantee excellence.

Right Place To Get Best Biology Tuitions

Over the years, we have served thousands of satisfied customers who have entrusted us with hiring biology tutors.

The testimonials of our previous clients stand as a testament to our commitment to quality and professionalism.

Rest assured, the biology online tutors selected by our esteemed tuition bureau are truly the cream of the crop, owing to the reasons mentioned above.

Don’t miss out on the opportunity to unlock your biology potential with our exceptional tuition services.

Unlock Your Biology Potential with Highly Qualified Tutors

Unleash Your Biology Potential with Highly Qualified and Dedicated Tutors

When it comes to biology tuition, having a qualified tutor by your side can make all the difference.

At our academy, we take pride in offering extremely qualified and subject matter expert tutors in biology, who possess years of teaching experience at all levels.

Moreover, our tutors are not only experts in their field but also skilled in effective teaching methods and handling children.

They understand the nuances of biology education and exhibit exceptional patience, motivation, and helpfulness to ensure a supportive learning environment.

Furthermore, our tutors go the extra mile to provide the best guidance to students.

They regularly provide excellent self-made notes, conduct tests, and refer to high-quality study materials when needed, ensuring comprehensive coverage of the subject matter.

By choosing our highly qualified tutors, you can rest assured that you will receive top-notch biology tuition that aligns with your learning needs.

Don’t miss out on the opportunity to unlock your biology potential and excel in your academic journey.

Expert A-Level Biology Tutors: Your Path to Success

Excelling in A-Level Biology with Expert Online Tutors

Whether you’re in Karachi, Pakistan, Lahore, London, Dubai, or Saudi Arabia, Al-Saudia Tutor Academy is the right place to find the best A-Level Biology tutors.

ASVA tutors possess a deep understanding of biology concepts and effortlessly relate them to real-world examples, providing comprehensive online tuition that caters to your specific needs.

Our tutoring sessions are designed to be interactive and interesting. Our tutors engage students by asking thought-provoking questions and offering relevant real-world examples, ensuring clarity and enhancing understanding of the subject matter.

To facilitate your learning process, our tutors provide timely and well-prepared notes, tips, and test papers.

They also recommend high-quality reference books to further enhance your knowledge and preparation for A-Level Biology.

What sets our tutors apart is not only their expertise, but also their friendly demeanor, motivation, and extraordinary patience when working with students.

They possess excellent communication skills and have a clear, soft-spoken voice that ensures excellent tuition sessions.

Rest assured, our best tutors have superb knowledge and are dedicated to providing you with tutorials specifically tailored to your curriculum standards and levels.

They are easily accessible through a simple phone call, making the process of obtaining expert and result-oriented tuition hassle-free.

By choosing our expert A-Level Biology tutors, you are taking a significant step towards achieving success in your academic journey.

Don’t hesitate to reach out and experience the transformative impact of our dedicated tutors today.

Achieve Full Marks in Biology with Innovative Online Tutors

Revolutionize Your Biology Performance with Innovative Online Tutors

Thanks to our experienced private online tutors in Pakistan, scoring full marks in Biology is now within your reach.

Highly Sought-After Tutors, Limited Availability, Visit our website, Pakistan Online Tuition, to explore the range of tutoring services we offer, and don’t hesitate to call us right away to book a demo session.

Experience firsthand how our innovative approach can transform your Biology learning journey.

Our commitment to providing the best online tutors extends to students all over the globe.

Regardless of your location, we strive to match you with the finest online tutor who suits your specific needs.

We offer online expert tutors for all subject, We take pride in delivering top-quality tuition services to students worldwide.

Embrace our innovative approach to Biology tuition and unlock your true potential.

Contact us today and let us connect you with the best online tutor, regardless of your subject or location.

Online Tutor Pakistan

Mathematics Worksheets

 Integration Made Easy

By Masood Amir

Mathematics Worksheets Mathematics Worksheets, ASVA provide calculus and Algebra worksheets.

Calculus:

To measure change or variation of a function with respect to the independent variable we use Calculus.

Differential Calculus: (Mathematics Worksheets)

Differrential Calculus used to measure change or variation of a function in a very small invterval of time.

Integral Calculus:

The branch of calculus used to measure changes or variation over an interval of independent variable, called Integral calculus, e.g to find length of curve, the area of region and the volume of a solid in a specified period of time.

The technique used to measure such changes or variation called “Integration” or “Antiderivatives. It a reverse process of differentiation.

Mathematically, Integration  defined as “ If f'(x) represents the differential coefficient of f(x), we need to find f(x), if we have f'(x) or dy/dx.

Integration

Notation: ''∫'' used to show the integration, it is a symbol of ``S'' derived from the word ``Sum''. i.e. Integration is a process in which we have to sum up the derivatives over a specified interval and to find the function.

Techniques of Integration:

As we know that integration is the reverse process of differentiation, our problem is to find the function f(x) or Y, when f'(X) or dy/dx is given.

dy/dx  &= f'(X)

∫dy &= ∫f '(X)dx

Y &= f(x) is our solution

Ist Formula of Integration (1st Rule of Integration)

Indefinite Integration:

Ist Formula of Integration (Ist Rule of Integration):

Let

    \[ \int dy = \int x^n dx \]

    \[ y = \frac{x^{n+1}}{n+1} + C \]

Why ``C'':

In the process of differentiation, we eliminate constant, as the derivative of a constant is “zero“.

So, In functions like x^n, x^n + 6, x^n - 3, x^n + k the derivatives of all of them is X^{n-1} , in finding the anti derivative of X^{n-1} we put a constant “C”, as we don’t know which constant was present in the original function, and  can be found If we have initial boundary values (Definite Integral).

Example: Solve \int x^n \, dx

Solution:

    \[ \int dy = \int x^3 dx \]

    \[ y = \frac{x^{3+1}}{3+1} + C \]

    \[ y = \frac{x^{4}}{4} + C \]

Example: Solve

    \[ \int (x^3 + x^2 + 5x + 6) \, dx \]

Solution:

    \[ \int (x^3 + x^2 + 5x + 6) \, dx \]

    \[ \int x^3 \, dx + \int x^2 \, dx + \int 5x \, dx + \int 6 \, dx \]

    \[ \frac{x^4}{4} + \frac{x^3}{3} + \frac{5x^2}{2} + 6x + C \]

Worksheet # 1

Find the Integral of the following:

SET 1 

(1)   \begin{align*} 1. & \quad \int (x^3 - 4x^2 + 5x - 6) \, dx \\ 2. & \quad \int (3x^5 - 4x^3 + 3x^2) \, dx \\ 3. & \quad \int (ax^5 - bx^4) \, dx \\ 4. & \quad \int \left( \frac{x^3}{2} - \frac{5x^4}{3} + 3x^2 \right) \, dx \\ 5. & \quad \int (4\sqrt{3}x^2 - 2x) \, dx \\ 6. & \quad \int \left( 3x + 5x^2 - \frac{x^3}{2} - 0.4x^4 \right) \, dx \\ 7. & \quad \int \left( x(8x - \frac{1}{2}) \right) \, dx \\ 8. & \quad \int (2 - x)(4 + 3x) \, dx \\ 9. & \quad \int \left( x^{-3} + x^{-4} \right) \, dx \\ 10. & \quad \int \left( (2x^3 - 3)(3x^4) \right) \, dx \\ 11. & \quad \int \left( 4x^7 + 3x^{12} - 5x^8 + 2x - 1 \right) \, dx \\ 12. & \quad \int \left( ax^3 - bx^2 + cx - d \right) \, dx \\ 13. & \quad \int \left( \frac{1}{x^3} + \frac{2}{x^2} - 6 \right) \, dx \\ 14. & \quad \int \left( -3x - 8 + 2\sqrt{x} \right) \, dx \\ 15. & \quad \int \left( (x^3 - 5)(2x + 5) \right) \, dx \\ 16. & \quad \int \left( 7x - 6 + 5\sqrt{x} \right) \, dx \end{align*}

Online Tuition

Tuition Pakistan

Online Tutor Pakistan

Al-Saudia Virtual Academy

Mathematics Notes

Mathematics Notes

Call Us: +92-332-3343253

Skype Id: ascc576

Email at: info@pakistanonlinetuition.com

Mathematics Notes: Optimized for Effective Learning

Mathematics Notes

Comprehensive Calculus Notes:

Our online Mathematics notes offer a comprehensive coverage of Calculus, ensuring a deep understanding of concepts like derivatives, integrals, and limits. These notes facilitate active learning and foster problem-solving skills.

Statistical Insights:

Our online Statistics notes equip students with the knowledge needed to analyze and interpret data effectively.

.Component and Defination of Mathematical Terms:

1.Sets
2.Complex Numbers
3.Quadratic Equations
3.Systems of Two Equations
4.Matrices

Determinants and Inverse Matrices
Groups
Sequence and Series
Permutations and Combinations
Introduction to Probability
Mathematical Induction
The Binomial Theorem
Fundamental Trigonometry
Trigonometric Identities
Trigonometric Functions
Solutions of Triangles
Inverse Trigonometric Functions
and Trigonometric equations
Orthogonal Trajectory

.

SETS

A set is a well-defined collection of distinct objects, considered as an object in its own right. The objects in a set are called elements or members of the set. Sets usually denote by capital letters, and we list their elements within curly braces, like this: A = {1, 2, 3, 4}.

Definition:

A set is a collection of distinct elements, typically written as: A={a1,a2,a3,… } where a1,a2,a3 are the elements of the set A. If an element belongs to a set, we say it is a member of the set, and this is denoted by x∈A if is an element of .

Types of Sets:

  1. Finite Set: A set with a limited number of elements.
    Example: B={2,4,6}
  2. Infinite Set: A set with an unlimited number of elements.
    Example: C={1,2,3,… }
  3. Subset: A set where all elements of one set are contained in another.
    Example: D⊆B
  4. Universal Set: The set that contains all objects under consideration, usually denoted by U.
  5. Empty Set (Null Set): A set that contains no elements, denoted by ∅.
    Example: E={ }
  6. Power Set: The set of all subsets of a set, including the empty set and the set itself.
    Example: Power set of A={1,2} is P(A)={∅,{1},{2},{1,2}}
  7. Equal Sets: Two sets are  equal if they have exactly the same elements.
    Example: {1,2}={2,1}
  8. Union of Sets: The set containing all elements from both sets. A={1,2,3) & B={2,4,6)
    Example: A∪B={1,2,3,4,6}
  9. Intersection of Sets: The set containing only elements common to both sets.
    Example: A∩B={2}

Applications of Sets:

Engineering:

Sets are crucial in computer science, particularly in the development of algorithms, data structures, and databases. Engineers also use sets to model systems, solve optimization problems, and perform operations like union and intersection for network analysis and circuit design.

Mathematics:

In mathematics, sets form the foundation for various concepts such as probability, calculus, and geometry. Set theory is used in solving complex problems, formulating proofs, and understanding functions.

Economics:

Sets help in analyzing data, consumer behavior, and market segmentation. Economists use sets to categorize and analyze different populations and to study the overlap and intersection of markets.

Physics:

In physics, sets are applied in quantum mechanics and relativity theory. Sets describe physical quantities, particle systems, and the union of various physical states.

Computer Science:

In programming, sets are used to manage collections of data, solve problems related to databases, and execute operations such as searching, sorting, and filtering.

Got Top

.

Complex Numbers:

Definition, Operations, and Applications

Complex numbers extend the concept of real numbers to include solutions to equations that do not have real solutions, such as the square root of negative numbers. They are essential in various fields of mathematics and engineering.

Definition

A  complex number is a number of the form:

    \[ z = a + bi \]

where:

a is the real part of the complex number,
b is the imaginary part,
i is the imaginary unit, defined as i = \sqrt{-1}.

For example, in the complex number 3 + 4i, 3 is the real part and 4 is the imaginary part.

Basic Operations

1. Addition: To add two complex numbers, add their real parts and imaginary parts separately.

    \[ (a + bi) + (c + di) = (a + c) + (b + d)i \]

2. Subtraction: To subtract two complex numbers, subtract their real parts and imaginary parts separately.

    \[ (a + bi) - (c + di) = (a - c) + (b - d)i \]

3. Multiplication: To multiply two complex numbers, use the distributive property and apply the fact that i^2 = -1.

    \[ (a + bi)(c + di) = (ac - bd) + (ad + bc)i \]

4. Division: To divide two complex numbers, multiply the numerator and the denominator by the conjugate of the denominator.

    \[ \frac{a + bi}{c + di} = \frac{(a + bi)(c - di)}{c^2 + d^2} = \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2} \]

5. Conjugate: The conjugate of a complex number a + bi is a - bi. Conjugates are useful in division and finding magnitudes.

    \[ Conjugate  of (a + bi) = a - bi \]

6. Magnitude: The magnitude (or modulus) of a complex number a + bi is given by:

    \[ |a + bi| = \sqrt{a^2 + b^2} \]

7. Argument: The argument (or angle) of a complex number a + bi is the angle \theta such that:

    \[ \theta = \tan^{-1}\left(\frac{b}{a}\right) \]

Polar Form of Complex Numbers

A complex number can be represented in the form

    \[z = a + bi\]

, where a is the real part of the complex number,
b is the imaginary part,
i is the imaginary unit, defined as i = \sqrt{-1}.

A complex number z can be expressed in polar form as:

    \[ z = r \left( \cos \theta + i \sin \theta \right) \]

where r is the magnitude (or modulus) of the complex number, given by

    \[ r = |z| = \sqrt{x^2 + y^2} \]

and \theta is the argument (or angle) of the complex number, measured from the positive x-axis, given by

    \[ \theta = \arg(z) = \tan^{-1} \left( \frac{y}{x} \right) \]

Euler’s Form of Complex Numbers

Euler’s formula relates complex exponentials to trigonometric functions:

Alternatively, the polar form can also be written using Euler’s formula as:

    \[ z = r e^{i \theta} \]

This is a more compact and elegant way of expressing the polar form. Here,

    \[ e^{i \theta} \]

represents the complex exponential, and \theta is the argument of the complex number. This form is particularly useful for multiplication, division, and finding powers and roots of complex numbers.

Examples 1:

Convert

    \[ z = 3 + 4i \]

into Polar & Euler’s For

To convert into polar form:

Magnitude:

    \[ r = \sqrt{3^2 + 4^2} = 5 \]

The argument \theta is:

    \[ \theta = \tan^{-1}\left(\frac{4}{3}\right) \approx 53.13^\circ \]

Thus, the polar form is:

    \[ z = 5 \left(\cos{53.13^\circ} + i \sin{53.13^\circ}\right) \]

In Euler’s form:

    \[ z = 5 e^{i 53.13^\circ} \]

Examples 2:

Convert

    \[ z = -1 + i \]

into Polar & Euler’s For

To convert into polar form:

Magnitude:

    \[ r = \sqrt{-1^2 + 1^2} = \sqrt{2} \]

Argument:

    \[\theta = \tan^{-1}(1 / -1) = 135^\circ \, \text{or} \, \pi=\ - \frac{\pi}{4}\]

Polar form:

    \[z = \sqrt{2} (\cos{135^\circ} + i \sin{135^\circ})\]

Euler’s Form

    \[ z = \sqrt{2} e^{i 135^\circ} \]

Derivation of Euler’s Form:

Euler’s form of a complex number provides a powerful and elegant way to represent complex numbers using exponential functions. Here’s a step-by-step explanation of Euler’s form and how it is derived from the polar form using the expansions of cosine and sine.

Euler’s Form of a Complex Number

Euler’s form of a complex number is given by:

    \[ z = r e^{i \theta} \]

where:

  • is the magnitude of the complex number.
  • \theta is the argument (angle) of the complex number.
  • e^{i\theta} is the exponential function involving the imaginary unit ii.

Derivation from Polar Form

Start with the Polar Form:The polar form of a complex number  is expressed as:

    \[z=r(cos⁡θ+isin⁡θ)\]

where:

    • is the magnitude of the complex number.
    • \theta is the argument or angle.

Use Euler’s Formula:Euler’s formula states that:

    \[z = cos⁡θ+isin⁡θ \]

is equal

    \[z = e^{i\theta}\]

 This is a fundamental result in complex analysis and connects exponential functions with trigonometric functions.

Substitute Euler’s Formula into the Polar Form:

To express the polar form in terms of Euler’s formula, substitute Euler’s formula into the polar form expression:

    \[z=r(cos⁡θ+isin⁡θ)\]

can be written as:

    \[z = r e^{i\theta}\]

This substitution uses the fact that

    \[e^{i\theta}\]

can be expanded as

    \[cos{\theta} + i \sin{\theta}\]

.

Expansion of Cosine and Sine

To see this more clearly, let’s expand

    \[e^{i\theta}\]

 using its Taylor series:

    • Taylor Series for

          \[e^{i\theta}\]

      :

    \[e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!}\]

Expanding

    \[(i\theta)^n\]

=

    \[i^n\theta^n\]

So:

    \[e^{i\theta} = \sum_{n=0}^{\infty} \frac{i^n\theta^n}{n!}\]

  • Separate Real and Imaginary Parts:

To separate the real and imaginary parts, recall that:

    \[ i^n = \begin{cases} 1 \quad \text{if } n \mod 4 = 0 \\ i \quad \text{if } n \mod 4 = 1 \\ -1 \quad \text{if } n \mod 4 = 2 \\ -i \quad \text{if } n \mod 4 = 3 \end{cases} \]

Grouping terms:

Real Part:

    \[ \text{Re}(e^{i\theta}) = \sum_{\text{n even}} \frac{(-1)^{n/2} \theta^n}{n!} = \cos{\theta} \]

Imaginary Part:

    \[ \text{Im}(e^{i\theta}) = \sum_{\text{n odd}} \frac{(-1)^{(n-1)/2} \theta^n}{n!} = \sin{\theta} \]

Hence, combining these:

    \[ e^{i\theta} = \cos{\theta} + i \sin{\theta} \]

WorkSheets On Complex Number

Convert Cartesian form into Polar & Euler’s Form

  • Convert z = 2 + 3i into polar form.
  • Convert z=−4+5i into Euler’s form.
  • Find the polar form of z=5+12i.
  • Convert z=−6+8i to Euler’s form.
  • Express z=1+i in polar form.
  • Find the Euler’s form of z=−3+4i.
  • Convert z=−2−3i into polar form.
  • Convert z=7−5i to Euler’s form.
  • Express z=8+6i in polar form.
  • Find the polar form of z=9+7i.
  • Convert z=−3+3i to Euler’s form.
  • Express z=4−4i in polar form.
  • Find the polar form of z=−5−2i.
  • Convert z=6+2i into Euler’s form.
  • Express z=−2+6i in polar form.
More Question:
  • Convert z=10−10i to Euler’s form.
  • Find the polar form of z=3+3i.
  • Convert z=−7+3i to Euler’s form.
  • Express z=−6+9i in polar form.
  • Find the Euler’s form of z=1−i.
  • Convert z=0+5i to polar form.
  • Convert z=4−3i into Euler’s form.
  • Find the polar form of z=−3−5i.
  • Convert z=−7+4i to Euler’s form.
  • Express z=2−5i in polar form.
  • Find the polar form of z=9+3i.
  • Convert z=−6+6i to Euler’s form.
  • Express z=−5+2i in polar form.
  • Find the Euler’s form of z=7+7i.
  • Convert z=3+5i to polar form.

Convert Polar & Euler’s form into   Cartesian Form

  • z = 4(\cos 30^\circ + i \sin 30^\circ), convert to Cartesian form.
  • Convert z = 6e^{i\frac{\pi}{6}} into Cartesian form.
  • Convert z = 5(\cos 60^\circ + i \sin 60^\circ) to Cartesian form.
  • Convert z = 7e^{i\frac{\pi}{4}} to Cartesian form.
  • Convert z = 3(\cos 45^\circ + i \sin 45^\circ) to Cartesian form.
  • Convert z = 2e^{i\frac{\pi}{3}} to Cartesian form.
  • Convert z = 8(\cos 90^\circ + i \sin 90^\circ) to Cartesian form.
  • Convert z = 10e^{i\frac{\pi}{2}} to Cartesian form.
  • Convert z = 12(\cos 135^\circ + i \sin 135^\circ)to Cartesian form.
  • Convert z = 4e^{i\frac{\pi}{4}} to Cartesian form.
  • Convert z = 9(\cos 120^\circ + i \sin 120^\circ) to Cartesian form.
  • Convert z = 5e^{i\frac{\pi}{3}} to Cartesian form.
  • Convert z = 6(\cos 150^\circ + i \sin 150^\circ) to Cartesian form.
  • Convert z = 7e^{i\frac{5\pi}{6}} to Cartesian form.
  • Convert z = 8(\cos 180^\circ + i \sin 180^\circ) to Cartesian form.
More Question
  • Convert z = 10e^{i\frac{\pi}{1}} to Cartesian form.
  • Convert z = 4(\cos 210^\circ + i \sin 210^\circ) to Cartesian form.
  • Convert z = 3e^{i\frac{7\pi}{6}} to Cartesian form.
  • Convert z = 2(\cos 240^\circ + i \sin 240^\circ) to Cartesian form.
  • Convert z = 6e^{i\frac{4\pi}{3}} to Cartesian form.
  • Convert z = 7(\cos 270^\circ + i \sin 270^\circ) to Cartesian form.
  • Convert z = 5e^{i\frac{3\pi}{2}} to Cartesian form.
  • Convert z = 8(\cos 300^\circ + i \sin 300^\circ) to Cartesian form.
  • Convert z = 9e^{i\frac{5\pi}{3}} to Cartesian form.
  • Convert z= 12(\cos 330^\circ + i \sin 330^\circ) to Cartesian form.
  • Convert z = 11e^{i\frac{11\pi}{6}} to Cartesian form.
  • Convert z = 13(\cos 360^\circ + i \sin 360^\circ) to Cartesian form.
  • Convert z = 14e^{i2\pi}}
  • Convert z = 15(\cos 45^\circ + i \sin 45^\circ) to Cartesian form.
  • Convert z = 16e^{i\frac{\pi}{6}} to Cartesian form.

Applications

1. Engineering:

Complex numbers are used in electrical engineering to analyze AC circuits, where they represent impedance and phase relationships. They simplify the analysis of alternating current (AC) signals and circuits.

2. Control Systems:

In control theory, complex numbers are used to describe system dynamics and stability. The poles and zeros of transfer functions are complex numbers that help in designing and analyzing control systems.

3. Signal Processing:

Complex numbers are employed in signal processing to handle frequency domain analysis. Fourier transforms and filters often use complex numbers to analyze and manipulate signals.

4. Physics:

Complex numbers are essential in quantum mechanics, where they describe wave functions and probability amplitudes. The Schrödinger equation, a fundamental equation in quantum mechanics, uses complex numbers.

5. Mathematics:

Complex numbers are used in various branches of mathematics, including complex analysis, which studies functions of complex variables. They also appear in solutions to polynomial equations and many areas of applied mathematics.

6. Computer Graphics:

In computer graphics, complex numbers are used for transformations and rotations. They help in manipulating images and performing geometric transformations efficiently.

Complex numbers provide a powerful framework for solving problems that cannot be addressed with real numbers alone, making them an indispensable tool in mathematics and engineering.

Got Top
.

Introduction to Quadratic Equations

A quadratic equation is a second-degree polynomial equation in a single variable , with the general form:

ax^2 + bx + c = 0 where a, b, and c are constants, and a \neq 0. The term “quadratic” comes from “quad,” meaning square, since the highest exponent of the variable is 2.

Uses and Applications of Quadratic Equations

Quadratic equations are used in various fields, including:

Physics: To describe projectile motion, the trajectory of an object can be modeled using quadratic equations.

Engineering: In structural engineering, quadratic equations help calculate loads, tensions, and forces.

Economics: They are used in cost, profit, and revenue functions, particularly in finding maximum or minimum values.

Biology: Quadratic equations help model population growth, the spread of diseases, or other natural phenomena.
Geometry: These equations are used in determining areas, and for working with parabolas and ellipses.

Quadratic Expressions and Quadratic Equations

Method of Solving Quadratic Expressions ax^2+bx+c, a \neq 0

1.Factorisation Method:

The goal is to express the quadratic expression in the form of two binomials:

    \[ ax^2 + bx + c = (px + q)(rx + s) \]

where p, q, r, and s are constants, and the equation is solved by finding appropriate factors of a \times c.

2. Completing the Square Method:

To solve the quadratic expression, we can complete the square as follows:

    \[ ax^2 + bx + c = a\left( x^2 + \frac{b}{a}x \right) + c \]

The next step is to add and subtract a term to make a perfect square trinomial:

    \[ x^2 + \frac{b}{a}x + \left( \frac{b}{2a} \right)^2 - \left( \frac{b}{2a} \right)^2 \]

After simplifying, we can rewrite it as:

    \[ \left( x + \frac{b}{2a} \right)^2 - \text{constant} \]

3. Quadratic Formula:

The quadratic formula is:

    \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

This method can be used for any quadratic equation to find its roots directly.

Factorisation Based on the Value of a and the Sign of c

In solving quadratic equations, it is important to consider the value of a and the sign of c.

CASE 1:

If a = 1, we check the sign of c.

If c is positive, both factors have the same sign as b, and their sum equals b.

Example:

    \[ x^2 + 7x + 12 = 0 \]

First, find factors of 12:

    \[ (1, 12), (2, 6), (3, 4) \]

Since 3 + 4 = 7, we split 7x into 3x and 4x, so the equation becomes:

    \[ x^2 + 3x + 4x + 12 = 0 \]

Now, factor:

    \[ x(x + 3) + 4(x + 3) = 0 \]

Thus:

    \[ (x + 3)(x + 4) = 0 \]

Setting each factor equal to zero:

    \[ x + 3 = 0 \quad \text{or} \quad x + 4 = 0 \]

So, the solutions are:

    \[ x = -3 \quad \text{and} \quad x = -4 \]

Similarly we can solve x^2 - 7x +12 =0

Case II:

if c is negative, factors subtracted and have different signs, the large factor keep the sign of b.

for example x^2 - x -12, in this case we need to find the factors of 12, which when subtracted give us -1, so again the difference of 4 and 3 is 1, but we put - sign with 4 nd split  -x as -4x and + 3x. now the equation becomes

x^2 -4x + 3x -12

(x -4)(x +3)

x-4 =0 and x+3=0

therefore the solution of the above equation are +4 and -3.

If a \neq 0

we first multiply a  and c  and the factorize the value of ac, repeat the case I and case II accordingly.

Quadratic Equation Questions

1. Solve the quadratic equation: x^2 - 4x - 5 = 0.
2. Solve the quadratic equation: 2x^2 + 3x - 2 = 0.
3. Find the roots of x^2 - 9 = 0.
4. Factor and solve: x^2 + 6x + 9 = 0.
5. Solve for x: 3x^2 - 2x - 8 = 0.
6. What are the solutions to x^2 + 4x + 4 = 0?
7. Solve by completing the square: x^2 - 6x + 5 = 0.
8. Use the quadratic formula to solve: x^2 - 7x + 10 = 0.
9. Solve the equation: 4x^2 - 12x + 9 = 0.
10. Solve x^2 + 8x + 16 = 0 by factoring.
11. Solve x^2 - 2x - 3 = 0 using the quadratic formula.
12. Find the roots of 5x^2 - 20x + 15 = 0.
13. Solve 3x^2 + 2x - 8 = 0 by completing the square.
14. Factor and solve x^2 - 16 = 0.
15. Solve 6x^2 - x - 1 = 0 using the quadratic formula.
16. Solve for x: x^2 + 5x + 6 = 0.
17. Find the solutions to x^2 - 25 = 0.
18. Solve 7x^2 + 14x + 7 = 0 by factoring.
19. What are the roots of 9x^2 - 24x + 16 = 0?
20. Solve 2x^2 - 10x + 12 = 0 using the quadratic formula.

Got Top
.

Methods Of Solving System of Two Linear Equations

solving a system of two linear equations. There are three main methods to solve such systems:

  • Substitution,
  • Elimination, and
  • Graphical Method.
  • Matrix Method

Substitution Method

Explanation:
In the substitution method, we solve one equation for one variable and substitute that expression into the other equation to find the value of the second variable.

Steps:

Solve one equation for one variable in terms of the other (e.g., solve for
𝑥 or 𝑦.
Substitute the expression into the other equation.
Solve for the second variable.
Use this value to find the first variable.

Example:
Solve the system of equations:

    \begin{align*} x + y &= 7 \quad \text{......(1)} \\ 2x - y &= 4 \quad \text{......(2)}\\ \end{align*}

Step 1: Solve equation 1 for y:

    \begin{align*}y &= 7 - x \quad\text{......(3)}\\ \end{align*}

Step 2: Substitute  y &= 7 - x  into equation (2)

    \begin{align*}2x-(7-x) &= 4\\ \end{align*}

Step 3: Solve for  x:

    \begin{align*}2x-7+x &= 4\\ 3x - 7 &= 4 \\ 3x &= 11 \\ x &= \frac{11}{3} \end{align*}

Step 4: Put the value of x in eq (1)

    \begin{align*}x+y &= 7\\ y+ \frac{11}{3}&=7\\ y &= 7 - \frac{11}{3}\\ y &= \frac{10}{3} \end{align*}

The solution is:​

    \begin{align*}x &= \frac{11}{3}\\ y&=\frac{10}{3}\\ \end{align*}

Substitution Method: 10 Practice Questions

    \begin{align*} 2x + y &= 5 \quad \text{......(1)} \\ x - y &= 1 \quad \text{......(2)} \end{align*}

    \begin{align*} x + 3y &= 7 \quad \text{......(1)} \\ 2x - y &= 4 \quad \text{......(2)} \end{align*}

    \begin{align*} x + y &= 3 \quad \text{......(1)} \\ x - 3y &= 5 \quad \text{......(2)} \end{align*}

    \begin{align*} x + y &= 3 \quad \text{......(1)} \\ 3x + y &= 9 \quad \text{......(2)} \end{align*}

    \begin{align*} 4x + y &= 10 \quad \text{......(1)} \\ 2x - y &= 3 \quad \text{......(2)} \end{align*}

    \begin{align*} x + 2y &= 8 \quad \text{......(1)} \\ 3x - y &= 7 \quad \text{......(2)} \end{align*}

    \begin{align*} 5x - y &= 11 \quad \text{......(1)} \\ 2x + y &= 4 \quad \text{......(2)} \end{align*}

    \begin{align*} x + y &= 6 \quad \text{......(1)} \\ 4x - y &= 9 \quad \text{......(2)} \end{align*}

    \begin{align*} 3x - 2y &= 5 \quad \text{......(1)} \\ x + y &= 4 \quad \text{......(2)} \end{align*}

    \begin{align*} 3x - 2y &= 5 \quad \text{......(1)} \\ x + y &= 4 \quad \text{......(2)} \end{align*}

    \begin{align*} 2x + 3y &= 12 \quad \text{......(1)} \\ x - y &= 2 \quad \text{......(2)} \end{align*}

    \begin{align*} 2x + 3y &= 12 \quad \text{......(1)} \\ x - y &= 2 \quad \text{......(2)} \end{align*}

    \begin{align*} 4x - y &= 2 \quad \text{......(1)} \\ x + 2y &= 5 \quad \text{......(2)} \end{align*}

Continue reading Mathematics Notes

MA Economics papers

MA Economics Past Papers

Call Us: +92332-3343253

Skype id: ascc576

Email: info@pakistanonlinetuition.com

MA Economics Papers

Pakistan Best Online Economics Tuition

Al-Saudia Virtual Academy is Pakistan’s leading online tuition academy, offering the best economics tuitions for students worldwide. Our highly qualified and experienced professors provide top-notch education in the field of economics. With a strong focus on quality, we ensure that students receive comprehensive knowledge and achieve excellent results.

MA Economics Past Paper Assistance

To excel in economics, students need thorough practice and understanding of past papers. Our online economics tutors offer valuable guidance and assistance in solving past papers. By analyzing previous years’ questions, students gain a better understanding of exam patterns and can effectively prepare for their upcoming assessments.

Efficient Economics Tutoring Services

At Al-Saudia Virtual Academy, we provide exceptional online economics tutoring services. Our dedicated tutors utilize effective teaching strategies to help students grasp complex economic concepts. With personalized attention and interactive sessions, students can enhance their understanding of various economic theories and principles.

Online Economics Tutor: A Convenient Learning Option

With the rise of online education, an online economics tutor has become a convenient choice for students worldwide. Our online tutoring platform allows students to access expert economics tutors from the comfort of their homes. This flexibility enables students to schedule sessions according to their convenience, eliminating the need for travel or fixed class timings.

MA Economics Papers: Comprehensive Coverage

We offer comprehensive support for MA economics papers. Our experienced tutors cover various subjects, including microeconomics, public finance, advanced economic statistics, macroeconomics, economics of Islam, mathematical economics, economics of planning, agricultural economics, national income analysis and accounting, and comparative economics. With in-depth knowledge and expertise in these areas, our tutors ensure students have a solid foundation in MA economics.

Pakistan Online Tuition Academy: Trusted Choice

Al-Saudia Virtual Academy is a trusted choice for online tuition in Pakistan. We cater to students from various countries, including the USA, UK, Canada, Saudi Arabia, Kuwait, Qatar, Bahrain, and more. Our tutors are well-versed in different curriculums, specifically those of American states such as Texas, Ohio, Virginia, and Alabama, as well as the UK, Canada, and Australia.

Contact Us for Online Economics Tuition

To avail our online economics tuition services, students can reach out to us through email at info@pakistanonlinetuition.com. Alternatively, they can add our Skype ID: ascc576 or call us at +923323343253. Our dedicated team is available to answer queries, provide information, and assist in arranging tutoring classes, assignment help, and homework support.

MA Economics Papers list:

Micro Economics Paper (I)

Advance Economics Statistics (III)

Economics of Planning

Paper (IV)

Mathematical Economics

Paper (V-C)